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Fujita’s proligand method is applied to the enumeration of ethane derivatives, where
the counting of stereoisomers of tartaric acids is examined in detail as a probe for test-
ing the versatility of the method. The cycle index with chirality fittingness (CI-CF) for
enumerating ethane derivatives is obtained by Fujita’s proligand method and compared
with the CI-CF derived alternatively by the direct calculation of permutations of sub-
stitution positions. The two CI-CFs are identical with each other so that the method-
ology underlying in Fujita’s method is demonstrated in a concrete fashion. The enu-
meration results are compared with those derived by Pólya’s corona. Fujita’s proligand
method is shown to be capable of enumerating stereoisomers, whereas Pólya’s corona is
concluded to enumerate graphs, but not stereoisomers. The conceptually change from
graphs to three-dimensional (3D) chemical structures is discussed, where the superiority
of Fujita’s proligand method is demonstrated.
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1. Introduction

1.1. Conventional descriptive stereochemistry

The distinction between graphs and three-dimensional (3D) chemical
structures (stereoisomers) has been one of the most crucial points in organic
stereochemistry. Although the conceptual change from graphs to 3D chemical
structures was exploited by Pasteur [1] and later accomplished by van’t Hoff [2]
and LeBel [3] during 1870s, most approaches to clarify the distinction between
graphs and 3D chemical structures have still remained within descriptive (or
qualitative or non-mathematical) stages.
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In order to show how descriptive the distinction is, it is informative to
examine the stereoisomerism of tartaric acids as a typical example, where one
graph (HOOC–CH(OH)–CH(OH)COOH) was recognized to correspond to one
enantiomeric pair (1/1) and one achiral stereoisomer (2), as shown in figure 1.
Although the presence of these isomers was already pointed out by van’t Hoff
[2], the enumeration of these isomers was manual so that a general proof for the
absence of other isomers was not taken into consideration.

Moreover, the achirality of 2 with two “asymmetric carbons”, which has
been referred to as “meso compounds”, has been explained in several ways, all of
which are descriptive. The original explanation of van’t Hoff [2] considered four
combinations (+−), (++), (−−), and (−+), where the symbols + and − are
equivalent to R and S in the modern context of the RS-nomenclature. Among
them, three combinations, i.e., (+−), (++), and (−−), remained because of the
symmetrical equality between (+−) and (−+). After the concept of conformation
was introduced, the achirality of 2 has been explained by the presence of at least
one conformer (2(a) or 2(b)) that is superposed onto itself by a reflection or inver-
sion operator, as shown in figure 2. Such a conformer was once called “symmetry
conformer” by Mislow [4]. Another type of meso compounds that have no “sym-
metry conformation” was reported and their achirality was ascribed to “transient
dl-pair” [5], where two conformers (3 and 4) that are non-superposable through
reflection or inversion operations are identical with each other through bond rota-
tions [figure 3]. The different ways of explanation such as “symmetry confor-
mation” and “transient dl-pair” should be replaced by a more succinct concept,

Figure 1. One pair of enantiomeric tartaric acids (1 and 1) and one achiral tartaric acid (2).

Figure 2. Examples of so-called “symmetry conformation” for the achiral tartaric acid (2). The
left conformer (2(a)) has a mirror plane perpendicular to the central C–C bond, while the right

conformer (2(b)) has an inversion center at the midpoint of the central C–C bond.
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Figure 3. An example of so-called “transient dl-pair”. The left conformer (3) can be converted into
the right one (4) by the reflection with a mirror on this page. Although these two conformers are
non-superposable in this projection, they becomes superposable by rotating either biphenyl unit by

90◦ around the biphenyl axis.

which should have a capability of serving as a basis for quantitative (or mathe-
matical) approaches as well as for qualitative (descriptive) ones.

1.2. Conventional chemical combinatorics for graphs, but not for 3D chemical
structures

On the other hand, combinatorial enumeration of isomers has been inves-
tigated as one of quantitative approaches of chemistry. In particular, Pólya’s
theorem [6,7] has been widely used to solve various problems in chemical fields,
as found in educational articles [8–11] as well as in several reviews [12–14] and
in books [15–17].

Although Pólya’s theorem aimed at enumerating groups, graphs, and chem-
ical compounds as the title of his original report indicated [6,7], the “chemical
compounds” enumerated by Pólya’s theorem are graphs, but not 3D chemical
structures from the viewpoint of stereochemistry. In other words, Pólya’s theorem
is incapable of treating enantiomeric relationships properly so that it is unable
to enumerate stereoisomers as 3D objects. Because of this essential feature, the
usage of Pólya’s theorem has been restricted to give non-stereochemical solutions
even if the theorem has been applied to stereochemical problems.

This feature has become more apparent when Pólya’s corona [6,7] (as
an extension of Pólya’s theorem) is applied to enumerate stereoisomers with
rotatable ligands such as substituted methyl groups. For example, Pólya’s corona
enumerates one graph (5) only in the enumeration of isomers having a lig-
and pattern XYZ–XYZ on an ethane skeleton, where the distinction between
R-CXYZ and S-CXYZ is disregarded so that they are equalized as a graph
CXYZ, as shown in figure 4. This is a general case involving the stereoisomer-
ism of tartaric acids (figure 1). Thus, Pólya’s corona (along with Pólya’s theorem)
is incapable of solving stereochemical problems in which such substituted methyl
groups may be chiral. From the stereochemical viewpoint, in fact, there exist one
pair of enantiomers (6 and 6) and one meso-form (7), as shown in figure 5.
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Figure 4. Chemical graph for representing ethane derivatives of ligand pattern X2Y2Z2

(XYZ–XYZ).

Figure 5. Chemical structures for representing ethane derivatives of ligand pattern X2Y2Z2

(XYZ–XYZ).

1.3. Scope and aims

As clarified in the preceding sections, the two conventional approaches,
i.e., the conventional descriptive stereochemistry and the conventional chemical
combinatorics for graphs, should be restructured to be capable of treating 3D
chemical structures. By demonstrating what they are deficient in and by intro-
ducing new concepts to avoid the deficiencies, the two approaches should be
integrated and re-composed so as to give a common basis of comprehending
stereochemistry.

To do this task, Fujita has proposed the concepts of proligand and
promolecule [18,19], where a proligand is defined as a structureless object with
chirality/achirality and a promolecule is defined as a skeleton whose substitu-
tion positions are occupied by proligands. These concepts have been used as a
descriptive tool for explaining meso compounds described above [20,21]. At the
same time, they have served as a mathematical tool for chemical combinatorics
[22,23] under the name of the unit-subduced-cycle-index (USCI) approach [19].
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Although the USCI approach is versatile to comprehend stereochemistry in
detail, it requires such intimate knowledge on group theories that is not involved
in a standard repertoire of combinatorics (e.g., Pólya’s theorem). It is desirable
to develop a new simplified method which holds the essential features of the
USCI approach (i.e., sphericity, proligand, and promolecule), because there are
cases in which more simplified results are sufficient. Moreover, the new simplified
method should directly succeed the methodology of Pólya’s theorem to accom-
plish the same task in a widely acceptable way. In other words, Pólya’s theorem
should be substantially extended in the light of the concepts of proligand and
promolecules to enumerate stereoisomers, but not graphs.

According to this guideline, Fujita [24,25] has developed a new method
(called the proligand method) based on the concept of sphericity indices of cycles,
where both achiral and chiral ligands are taken into consideration in the light of
the concepts of proligand and promolecule.

In the present paper, Fujita’s proligand method will be applied to the enu-
meration of such stereoisomers as shown in figure 5, where its superiority over
Pólya’s corona as well as over Pólya’s theorem will be demonstrated. This will
give a quantitative solution to the problems concerning such meso compounds as
the achiral tartaric acid. Thereby, such combinatorial enumeration as provided
by Fujita’s proligand method will be shown to enrich introductory courses as
well as advanced courses in stereochemistry as a new repertoire.

2. The proligand method for enumerating chemical structures

2.1. Basic concepts

The proligand method developed by Fujita [24,25] can be applied to the
enumeration of ethane derivatives as 3D chemical structures. We first consider
a skeleton (8) that has two substitution positions. Each of the two positions
accommodates a chiral or achiral proligand to generate a promolecule such as
9, which is, for example, generated by the substitution of two chiral proligands
(p). Then, the proligands are replaced by a chiral ligand (R-CXYZ) to produce
a molecule (10), where the priority of the atoms or achiral ligands (i.e., X, Y,
and Z) is presumed to be X > Y > Z; and the vacant valency of the ligand is
regarded as having the lowest priority. Thus, such stepwise processes as exem-
plified by figure 6 (skeleton → promolecule → molecule) are considered in the
enumeration of ethane derivatives.

It should be noted that a proligand is defined as a structureless object
that has chirality/achirality in isolation [18]. If a proligand is monovalent as
presumed in the present article, it can be regarded as belonging to the infi-
nite point group C∞v (achiral) or C∞ (chiral) in isolation. Thus, each proligand
has such an abstract meaning, whereas concrete ligands such as a methyl group



180 S. Fujita / Combinatorial enumeration of ethane derivatives

Figure 6. Process of the proligand method for converting a skeleton into a molecule through a
promolecule. The symbol p represents a chiral proligand, which is replaced by a chiral ligand

CXYZ.

(CH3: C3v), a hydroxy group (OH: Cs), and a CXYZ group (C1) belong to the
respective point groups of finite order.

Fujita’s proligand method treats stereoisomers properly in the level of con-
figuration by introducing the concepts of proligand and promolecule. Without
these concepts, combinatorial enumeration is forced to be carried out in the level
of conformation, where both an eclipsed form and a staggered form (or strictly
other various conformations) should be taken into consideration, as shown in
figure 2. The two forms (or the other conformers) in the level of conformation
should be equalized as a stereoisomer in order to accomplish the combinatorial
enumeration properly in the level of configuration. This equalization is realized
by Fujita’s proligand method, as discussed in the following sections.

2.2. Skeletons into promolecules

When we sequentially number the two positions of the skeleton (8), we can
obtain the following permutation group:

Ĝ = {(1)(2), (1 2), (1)(2), (1 2)}, (1)

which permutes the two positions, where each overbar represents the future
change of the chirality of a proligand occupying the position. It should be noted
that the cycles (1 2) and (1 2) express the same permutation of positions but
differ from each other in the action on proligand chirality. Hence, we refer
to the first two permutations, i.e., (1)(2) and (1 2), as proper permutations in
accord with the corresponding proper rotations. The second two permutations,
i.e., (1)(2) and (1 2), are called improper permutations in accord with the corre-
sponding improper rotations (rotoreflections). A cycle appearing in a proper or
improper permutation is referred as a proper or improper d-cycle.

According to the sphericity of a proper or improper d-cycle appearing in
each permutation, a sphericity index is assigned to the d-cycle [24]:
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Table 1
Cycles and products of (extended) sphericity indices for enumerating ethane derivatives.

Cycles Products of sphericity indices Products of extended sphericity indices

Proper (1)(2) b2
1 ψ2

(b)1

permutation (1 2) b2 ψ(b)2

Improper (1)(2) a2
1 ψ2

(a)1

permutation (1 2) c2 ψ(c)2

1. A proper d-cycle (odd or even) is hemispheric in general to be assigned
to a sphericity index bd .

2. An improper d-cycle (d: odd) is homospheric in general to be assigned
to a sphericity index ad .

3. An improper d-cycle (d: even) is enantiospheric in general to be assigned
to a sphericity index cd .

Thus, a sphericity index b1 is assigned to each of one-cycles, (1) or (2),
which is determined to be a hemispheric one-cycle because the one-cycle is con-
cerned with a proper permutation. Then the product of the sphericity indices b2

1
is assigned to the permutation represented by the product of such cycles, i.e.,
(1)(2). Similarly, a sphericity index b2 is assigned to a two-cycle, (1 2), which is
determined to be a hemispheric two-cycle [24] because the two-cycle is concerned
with a proper permutation. Note that the letter b of the index bd represents the
hemisphericity and the subscript 1 or 2 expresses that the cycle at issue is a one-
cycle or two-cycle. These results are summarized in table 1.

On the other hand, a sphericity index a1 is assigned to each of one-cycles,
(1) or (2), which is determined to be a homospheric one-cycle because the one-
cycle is concerned with an improper permutation [24]. Then the product of the
sphericity indices a2

1 is assigned to the improper permutation represented by the
product of such cycles, i.e., (1)(2), as shown in table 1. The letter a of the index
ad represents the homosphericity and the subscript 1 represents a one-cycle.

A sphericity index c2 is assigned to a two-cycle, (1 2), which is determined
to be an enantiospheric two-cycle [24] because the two-cycle is concerned with an
improper permutation. The letter c of the index c2 represents the enantiospherici-
ty and the subscript 2 represents a two-cycle. The result is summarized in table 1.

Following equation (2) of the previous paper [24], the cycle index with chi-
rality fittingness (CI-CF) for this case is obtained as follows:

CI-CF(Ĝ; $d) = 1
4

(
b2

1 + b2 + a2
1 + c2

)
(2)

by using the products of sphericity indices listed in table 1, where the symbol $d
represents a sphericity index, ad , bd , or cd , according to the respective sphericity.
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Note that the value 4 of the fraction 1/4 of equation (2) is the order of the group
Ĝ.

Suppose that we select two proligands from achiral proligands (A and B)
and chiral proligands (p, p, q, and q), where p and p (or q and q) represent a
pair of enantiomeric proligands in isolation. By following theorem 1 of the pre-
vious paper [24], we use the following inventories:

ad = Ad + Bd, (3)

cd = Ad + Bd + 2pd/2pd/2 + 2qd/2qd/2, (4)

bd = Ad + Bd + pd + pd + qd + qd. (5)

The term “inventory” is used after the previous usage of Pólya [17], but in
an extended meaning, because these equations indicate the inventory of possi-
ble achiral or chiral proligands as well as their modes of accommodation. Pólya’s
original usage is concerned with ligands (not proligands) and does not designate
the mode of accommodation.

These inventories (equations (3)–(5)) are introduced into equation (2) and
the resulting equation is expanded to give the following generating function:

F = [A2 + B2] + AB

+ 1
2 [(Ap + Ap)+ (Aq + Aq)+ (Bp + Bp)+ (Bq + Bq)]

+ 1
2 [(p2 + p2)+ (q2 + q2)]

+ 1
2 [(pq + pq)+ (pq + pq)]

+ [pp + qq], (6)

where the coefficient of each term represents the number of stereoisomers. Note
that the present enumeration counts a pair of enantiomers once. Hence the term
(1/2)(Ap + Ap), for example, represents one pair of enantiomers (Ap and Ap).
When we place p = p, we obtain (1/2)(Ap + Ap) = Ap, (1/2)(p2 + p2) = p2,
etc. Hence, equation (6) is converted into the following form:

F ′ = [A2 + B2] + AB + [Ap + Aq + Bp + Bq]

+ 2[p2 + q2] + 2pq. (7)

The term 2p2 in equation (7) comes from the terms (1/2)(p2 + p2) and pp

appearing in equation (6). Hence, the coefficient 2 of the term 2p2 in equation 7
expresses the presence of one pair of enantiomers and one achiral molecule
(meso-compound). This result is in agreement with figure 5, where p and p are
replaced by R-CXYZ and S-CXYZ. The stereoisomers enumerated by the gen-
erating function (equation (6)) are categorized into six types, as differentiated by
brackets. They are illustrated in figure 7, where an arbitrary one of enantiomers
is depicted as a representative if chiral (A–p, p–p, and p–q).
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Similar results to figure 7 have been obtained by employing two methods of
the USCI approach proposed by Fujita [20,26]. If the reader compare between
the two methods and the present proligand method, he/she would reach a deeper
insight to stereochemistry,

2.3. Promolecules into molecules

The next step (promolecule → molecule) is the replacement of the proli-
gands (A, B, p, p, q, q) by ligands derived from a methyl ligand. For this pur-
pose, we consider extended sphericity indices (ψ($)k) in place of sphericity indices
($d) described above.

2.3.1. Extended sphericity indices
Extended sphericity indices ψ($)k ($ = b, a, or c) used in Fujita’s proligand

method are obtained in a similar way to sphericity indices described above for
promolecules ($d : $ = b, a, or c). Thus, in place of the sphericity index b1 for a
hemispheric one-cycle, we consider an extended sphericity index ψ(b)1 is assigned
to each of one-cycles, (1) or (2), which appear in equation (1) [25]. Then the
product of the extended sphericity indices ψ2

(b)1 is assigned to the permutation
represented by the product of such cycles, i.e., (1)(2). Similarly, an extended sphe-
ricity index ψ(b)2 is assigned to a two-cycle, (1 2) in place of the sphericity index
b2 for a hemispheric two-cycle [25]. Note that the subscript (b) represents the
hemisphericity and the other subscript 1 or 2 expresses that the cycle at issue is
a one-cycle or two-cycle. These results are summarized in table 1.

In place of the sphericity index a1 for a homospheric one-cycle, an extended
sphericity index ψ(a)1 is assigned to each of one-cycles, (1) or (2), Then the prod-
uct of the extended sphericity indices ψ2

(a)1 is assigned to the improper permuta-
tion represented by the product of such cycles, i.e., (1)(2), as shown in table 1
[25]. The subscript (a) represents the homosphericity and the other subscript 1
represents a one-cycle.

In place of the sphericity index c2 for an enantiospheric two-cycle, an
extended sphericity index ψ(c)2 is assigned to a two-cycle, (1 2) [25]. The

Figure 7. Promolecules based on the skeleton 8. The molecules A–A, A–B, and p–p are achiral. The
other molecules A–p, p–p, and p–q are chiral, where an appropriate enantiomer is depicted for each

pair of enantiomers.



184 S. Fujita / Combinatorial enumeration of ethane derivatives

subscript (c) represents the enantiosphericity and the other subscript 2 represents
a two-cycle. The result is summarized in table 1.

Following equation (34) of the previous paper [25], the CI-CF for this case
is obtained as follows:

CI-CF(Ĝ;ψ($)k) = 1
4 (ψ

2
(b)1 + ψ(b)2 + ψ2

(a)1 + ψ(c)2), (8)

by using the products of extended sphericity indices listed in table 1, where the
subscript ($) represents (a), (b), or (c) according to the respective sphericity.

2.3.2. Proligand enumeration for obtaining inventories
In order to proceed to the step converting a promolecule (e.g., 9) into a

molecule (e.g., 10), the derivation of a methyl ligand should be examined. When
we number the three positions of the methyl ligand, we obtain a permutation
group Ĥ containing proper and improper rotations as well as another permuta-
tion group Ĥ

′
containing proper rotations only:

Ĥ = {(1)(2)(3), (1 3 2), (1 2 3),

(1 2)(3), (1 3)(2), (1)(2 3)},
Ĥ

′ = {(1)(2)(3), (1 3 2), (1 2 3)},

where an overbar represents an improper permutation. Sphericity indices (bd , ad ,
and cd) for ligand enumeration can be obtained in a similar way to the spheric-
ity indices described above for the skeleton. Thereby, the products of sphericity
indices are obtained, as shown in table 2.

By applying equations (8) and (9) of the previous paper [25] to the present
case, we obtain the corresponding cycle indices with chirality fittingness (CI-CF)
as follows:

CI-CF(Ĥ; $d) = 1
6

(
b3

1 + 2b3 + 3a1c2
)
, (9)

CI-CF(Ĥ
′; bd) = 1

3

(
b3

1 + 2b3
)
, (10)

Table 2
Cycles and products of sphericity indices for enumerating methyl ligands.

Cycles Products of sphericity indices

Proper permutation (1)(2)(3) b3
1

(1 3 2) b3

(1 2 3) b3

Improper permutation (1 2)(3) a1c2

(1 3)(2) a1c2

(1)(2 3) a1c2
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where the data collected in table 2 are used. In equation (9), the symbol $ in the
left-hand side represents a, b, or c according to the respective sphericity. Note
that the orders of the groups Ĥ and Ĥ

′
are equal to 6 and 3, respectively, which

appear in the fractions of equations (9) and (10).
The former equation (equation (9)) is obtained by regarding a methyl skel-

eton as being achiral, because the achiral group Ĥ is used. On the other hand,
the latter equation (equation (10)) is obtained by regarding a methyl skeleton as
being chiral, because the achiral group Ĥ

′
is used.

Following equations (31)–(33) of the previous paper [25], we obtain the fol-
lowing equations:

ψ(a)k = 2CI-CF(Ĥ; $kd)− CI-CF(Ĥ
′; bkd) = akc2k, (11)

ψ(c)k = CI-CF(Ĥ
′; ckd) = 1

3c
3
k + 2

3c3k, (12)

ψ(b)k = CI-CF(Ĥ
′; bkd) = 1

3b
3
k + 2

3b3k, (13)

where the subscript d in equations (9) and (10) is replaced by kd to obtain
the right-hand sides. It should be noted that equation (32) for ψ(c)k of [25] is
extended to give equation (12) so that the relevant orbit can accommodate chiral
ligands as well as achiral ones.

2.3.3. Stereoisomer enumeration
The three equations (equations (11)–(13)) are introduced into equation (8)

to give the following equation:

CI-CF′(Ĝ[Ĥ]; $d) = 1
36b

6
1 + 1

9b
3
1b3 + 1

9b
2
3 + 1

12b
3
2

+ 1
6b6 + 1

4a
2
1c

2
2 + 1

12c
3
2 + 1

6c6. (14)

By considering atoms or achiral ligands only (X, Y, and Z), we can use
identical inventories as follows

ad = bd = cd = Xd + Y d + Zd, (15)

which are introduced into equation (14). Thereby, we obtain a generating func-
tion for giving the numbers of ethane derivatives as the coefficients of the respec-
tive terms, which are itemized according to chemical structures:

f = (X6 + Y 6 + Z6)+ (X5Y +X5Z +XY 5 +XZ5 + Y 5Z + YZ5)

+2(X4Y 2 +X4Z2 + Y 4Z2 +X2Y 4 +X2Z4 + Y 2Z4)

+2(X4YZ +XY 4Z +XYZ4)

+3(X3Y 2Z +X3YZ2 +X2Y 3Z +X2YZ3 +XY 3Z2 +XY 2Z3)

+2(X3Y 3 +X3Z3 + Y 3Z3)+ 5X2Y 2Z2. (16)
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The coefficient of each term XxY yZz (x + y + z = 6) in equation (16) represents
the number of stereoisomers with x of X, y of Y, and z of Z, where a pair of
enantiomers is counted once if chiral.

To show the meanings of equations (11)–(13), the inventories (equation
(15)) are introduced into these equations under the condition of k = 1 to give:

ψ(a)1 = X3 +X2Y +XY 2 + Y 3 +X2Z

+Y 2Z +XZ2 + YZ2 + Z3, (17)

ψ(c)1 = X3 +X2Y +XY 2 + Y 3 +X2Z + 2XYZ

+Y 2Z +XZ2 + YZ2 + Z3, (18)

ψ(b)1 = X3 +X2Y +XY 2 + Y 3 +X2Z + 2XYZ

+Y 2Z +XZ2 + YZ2 + Z3. (19)

The term 2XYZ appearing in the right-hand side of equation (18) stems from
two modes of compensated pairwise packing of R-CXYZ and S-CXYZ for an
enantiospheric cycle [19]. On the other hand, the term 2XYZ appearing in the
right-hand side of equation (19) represents a respective occupation by R-CXYZ
or S-CXYZ for a hemispheric cycle. The chiral ligands do not appear in equa-
tion (17) for a homospheric cycle.

2.4. Concrete forms of permutations

As found in the preceding derivations, Fujita’s proligand method does not
require the concrete forms of permutations for nonrigid molecules generated by
the derivation process in which proligands in a promolecule are replaced by lig-
ands. Instead, it only requires permutations for a promolecule (as collected in
table 1 in the form of cycles for the present case) and permutations for a ligand
(as collected in table 2 in the form of cycles for the present case).

To understand the total feature of the derivation process, however, it is
illustrative to examine the concrete permutations for the nonrigid molecules.
Suppose that the position 1 of the skeleton 17 accommodates a ligand numbered
as 1–3, while the position 2 of the skeleton 17 accommodates a ligand numbered
as 4–6, as depicted in figure 8.

To illustrate the concrete form of a proper permutation, let us consider
(1 2) of Ĝ for 18, where the 1 of Ĝ accommodates a ligand permuted by
(1)(2)(3) of Ĥ (i.e., no rotation), while the 2 of Ĝ accommodates a ligand per-
muted by (4)(5)(6) of Ĥ (i.e., no rotation). Then we can obtain the following
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permutation and the corresponding product of cycles:

1
︷ ︸︸ ︷

2
︷ ︸︸ ︷(

1 2 3
4 5 6

4 5 6
1 2 3

)

︸ ︷︷ ︸
2

︸ ︷︷ ︸
1

= (1 4)(2 5)(3 6). (20)

The horizontal braces over the permutation represent the original numbering of
the two positions, while the horizontal braces under the permutation represent
the numbering after the permutation. The product of cycles in the right-hand
side of equation (20) corresponds to a product of sphericity indices (PSI), b3

2,
because all of the involved cycles are two-membered hemispheric cycles. These
data are shown in the tenth data row of table 3. In similar ways, the remaining
permutations (products of cycles) and PSIs for proper rotations are obtained, as
collected in table 3, where each total permutation is expressed as a product of
cycles.

To illustrate the concrete form of an improper permutation (figure 9), on
the other hand, let us consider (1 2) of Ĝ for 19, where the 1 of Ĝ accommo-
dates a ligand permuted by (1)(2 3) of Ĥ, while the 2 of Ĝ accommodates a lig-
and permuted by (4)(5 6) of Ĥ. Then we can obtain the following permutation
and the corresponding product of cycles:

1
︷ ︸︸ ︷

2
︷ ︸︸ ︷(

1 2 3
4 6 5

4 5 6
1 3 2

)

︸ ︷︷ ︸

2

︸ ︷︷ ︸

1

= (1 4)(2 6)(3 5). (21)

This product of cycles corresponds to a PSI, c3
2, because the involved cycles are

two-membered enantiospheric cycles. These data are shown in the tenth data row
of table 4. In similar ways, the remaining permutations (products of cycles) and

Figure 8. Numbering of an ethane skeleton and a proper permutation.
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Table 3
Proper permutations for nonrigid ethane derivatives.

Skeleton Ligands

Ĝ Ĥ Ĥ Total permutation PSI

(1)(2) (1)(2)(3) (4)(5)(6) (1)(2)(3)(4)(5)(6) b6
1

(1)(2) (1)(2)(3) (4 6 5) (1)(2)(3)(4 6 5) b3
1b3

(1)(2) (1)(2)(3) (4 5 6) (1)(2)(3)(4 5 6) b3
1b3

(1)(2) (1 3 2) (4)(5)(6) (1 3 2)(4)(5)(6) b3
1b3

(1)(2) (1 3 2) (4 6 5) (1 3 2)(4 6 5) b2
3

(1)(2) (1 3 2) (4 5 6) (1 3 2)(4 5 6) b2
3

(1)(2) (1 2 3) (4)(5)(6) (1 2 3)(4)(5)(6) b3
1b3

(1)(2) (1 2 3) (4 6 5) (1 2 3)(4 6 5) b2
3

(1)(2) (1 2 3) (4 5 6) (1 2 3)(4 5 6) b2
3

(1 2) (4)(5)(6) (1)(2)(3) (1 4)(2 5)(3 6) b3
2

(1 2) (4)(5)(6) (1 3 2) (1 4 3 6 2 5) b6

(1 2) (4)(5)(6) (1 2 3) (1 4 2 5 3 6) b6

(1 2) (4 6 5) (1)(2)(3) (1 6 3 5 2 4) b6

(1 2) (4 6 5) (1 3 2) (1 6 2 4 3 5) b6

(1 2) (4 6 5) (1 2 3) (1 6)(2 4)(3 5) b3
2

(1 2) (4 5 6) (1)(2)(3) (1 5 2 6 3 4) b6

(1 2) (4 5 6) (1 3 2) (1 5)(2 6)(3 4) b3
2

(1 2) (4 5 6) (1 2 3) (1 5 3 4 2 6) b6

PSIs for improper rotations are obtained, as collected in table 4, where each total
permutation is expressed as a product of cycles.

By collecting the PSIs in tables 3 and 4 we obtain the CI-CF for this case
as follows:

CI-CF′′(Ĝ[Ĥ]; $d) = 1
36

(
b6

1 + 4b3
1b3 + 4b2

3 + 3b3
2

+ 6b6 + 9a2
1c

2
2 + 3c3

2 + 6c6
)
, (22)

where the value 36 in the fraction 1/36 is equal to the order of the permutation
group Ĝ[Ĥ], the elements (as products of cycles) of which are listed in tables 3
and 4. This equation is identical with equation (14) which has been obtained by
virtue of Fujita’s proligand method.

2.5. Achiral conformers and chiral conformers

The staggered conformer used in figures 8 and 9 is achiral in itself (as
in the fixed conformation), where an inversion operation corresponds to the
permutation (1 4)(2 6)(3 5), as shown in figure 9. The permutations listed in
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Table 4
Improper permutations for nonrigid ethane derivatives.

Skeleton Ligands

Ĝ Ĥ Ĥ Total permutation PSI

(1)(2) (1)(2 3) (4)(5 6) (1)(2 3)(4)(5 6) a2
1c

2
2

(1)(2) (1)(2 3) (4 6)(5) (1)(2 3)(4 6)(5) a2
1c

2
2

(1)(2) (1)(2 3) (4 5)(6) (1)(2 3)(4 5)(6) a2
1c

2
2

(1)(2) (1 3)(2) (4)(5 6) (1 3)(2)(4)(5 6) a2
1c

2
2

(1)(2) (1 3)(2) (4 6)(5) (1 3)(2)(4 6)(5) a2
1c

2
2

(1)(2) (1 3)(2) (4 5)(6) (1 3)(2)(4 5)(6) a2
1c

2
2

(1)(2) (1 2)(3) (4)(5 6) (1 2)(3)(4)(5 6) a2
1c

2
2

(1)(2) (1 2)(3) (4 6)(5) (1 2)(3)(4 6)(5) a2
1c

2
2

(1)(2) (1 2)(3) (4 5)(6) (1 2)(3)(4 5)(6) a2
1c

2
2

(1 2) (4)(5 6) (1)(2 3) (1 4)(2 6)(3 5) c3
2

(1 2) (4)(5 6) (1 3)(2) (1 4 3 5 2 6) c6

(1 2) (4)(5 6) (1 2)(3) (1 4 2 6 3 5) c6

(1 2) (4 6)(5) (1)(2 3) (1 6 2 5 3 4) c6

(1 2) (4 6)(5) (1 3)(2) (1 6)(2 5)(3 4) c3
2

(1 2) (4 6)(5) (1 2)(3) (1 6 3 4 2 5) c6

(1 2) (4 5)(6) (1)(2 3) (1 5 3 6 2 4) c6

(1 2) (4 5)(6) (1 3)(2) (1 5 2 4 3 6) c6

(1 2) (4 5)(6) (1 2)(3) (1 5)(2 4)(3 6) c3
2

Figure 9. Numbering of an ethane skeleton and an improper permutation.

tables 3 and 4 corresponds to the symmetry operations of D3d and the subse-
quent bond rotations of the methyl ligands in the staggered conformer (17 or 2).
The permutations listed in tables 3 and 4 are also effective if we take account of
an eclipsed conformer such as 1.

Moreover, the permutations listed in tables 3 and 4 are effective if we select
any other conformer as a basis. For example, figure 10 shows the Newman
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Figure 10. Permutations on a chiral conformer.

projections of a chiral conformer (20) of D3 and its enantiomeric conformer
(21), which serves as skeletons for the permutations listed in tables 3 and 4. The
action of the improper permutation (1 4)(2 6)(3 5) on 20 produces a conformer
22 with a different mode of numbering, where the configurations S (1 > 2 > 3)
and S (4 > 5 > 6) in 20 are transformed into the configurations R (1 > 2 > 3)
and R (4 > 5 > 6) in 22. The conformer 22 can be equalized to the conformer
21 by proper rotations and bond rotations. On the other hand, the action of the
proper permutation (1 4)(2 5)(3 6) on 20 produces a conformer 23 with a differ-
ent mode of numbering, where the configurations S (1> 2> 3) and S (4 > 5 > 6)
in 20 are the same as the configurations S (1 > 2 > 3) and S (4 > 5 > 6) in 23.
The conformer 23 can be equalized to the conformer 20 by proper rotations and
bond rotations.

It should be noted that the action of the permutation (1 4)(2 6)(3 5) on
20 produces a conformer 24 with a different mode of numbering. However, the
permutation (1 4)(2 6)(3 5) is not involved in the lists of tables 3 and 4. This
means that the resulting conformer 24 cannot be equalized within the group Ĝ.
The conformers 22 and 24 may be equalized by bond rotations if we postulate
the condition of 1 = 1, 2 = 2, and 3 = 3; however, this condition is not always
satisfied.

The method illustrated by figure 10 can be applied to the case shown in fig-
ure 3, where the achirality is explained in a similar way to figure 10. It should
be noted that the numbering can be altered without losing generality.
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The method described in this subsection must examine various conformers
of a nonrigid molecule in order to comprehend the stereoisomerism and the chi-
rality/achirality of the molecule. In contrast, Fujita’s proligand method does not
directly take account of such conformation, because it regards nonrigid mole-
cules as sophisticated combinations between promolecules (with proligands) and
ligands (in isolation). It should be emphasized that the sophisticated combina-
tions are controlled by the sphericity concept.

3. Pólya’s corona for enumerating graphs

In contrast to Fujita’s proligand method [24,25], Pólya’s corona, which has
been introduced along with Pólya’s theorem in his famous article [6,7], enumer-
ates chemical compounds as graphs, not as 3D chemical structures. Thus, Pólya’s
corona considers the permutation group of order 2:

G = {(1)(2), (1 2)} (23)

to specify the skeleton (8), which is characterized by a cycle index represented by

CI(G;ψk) = 1
2

(
ψ2

1 + ψ2
)
. (24)

When we consider methyl ligands as substituents, the term ψk is represented by
the following equation:

ψk = 1
6

(
s3
k + 2s3k + 3sks2k

)
, (25)

where the methyl has H-symmetry:

H = {(1)(2)(3), (1 3 2), (1 2 3), (1)(2 3), (1 3)(2), (1 2)(3)}.

By introducing equation (25) into the cycle index (equation (24)), we obtain an
equation having dummy variables sd :

CI(G[H]; sd) = 1
72s

6
1 + 1

18s
3
1s3 + 1

12s
4
1s2 + 1

18s
2
3

+ 1
6s1s2s3 + 1

8s
2
1s

2
2 + 1

12s
3
2 + 1

6s6 + 1
4s2s4. (26)

The dummy variables sd in equation (26) are replaced by the following
inventories:

sd = Xd + Y d + Zd, (27)

where each methyl ligand accommodates three atoms selected from X, Y, and Z. By
expanding the resulting equation, we obtain the following generating function:
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f ′ = (X6 + Y 6 + Z6)+ (X5Y +X5Z +XY 5 +XZ5 + Y 5Z + YZ5)

+ 2(X4Y 2 +X4Z2 + Y 4Z2 +X2Y 4 +X2Z4 + Y 2Z4)

+ 2(X4YZ +XY 4Z +XYZ4)

+ 3(X3Y 2Z +X3YZ2 +X2Y 3Z +X2YZ3 +XY 3Z2 +XY 2Z3)

+ 2(X3Y 3 +X3Z3 + Y 3Z3)+ 4X2Y 2Z2. (28)

The coefficient of each term XxY yZz (x + y + z = 6) in equation (28) represents
the number of isomers (as graphs) with x of X, y of Y, and z of Z. It should
be noted that the coefficients collected in equation (28) have been obtained by
using Pólya’s corona.

The introduction of the inventory (equation 27) into the intermediate
equation (equation (25)) under the condition of k = 1 produces the following
equation:

ψ1 = X3 +X2Y +XY 2 + Y 3 +X2Z +XYZ + Y 2Z +XZ2 + YZ2 + Z3, (29)

where each term on the right-hand side of equation (29) shows the type of a lig-
and to be considered. Because the coefficient of the term XYZ in equation (29)
is equal to 1, the corresponding chiral ligands R-CXYZ and S-CXYZ are equal-
ized to be one graph.

4. 3D Structures versus graphs

Fujita’s proligand approach uses a CI-CF (such as equation (8)) which is
introduced by three inventories (such as equations (11)–(13)) to produce an inter-
mediate equation (e.g., (14)). On the other hand, Pólya’s corona uses a cycle
index (such as equation (24)) and a single inventory (such as equation (25)) to
produce an intermediate equation (e.g., (26)). This difference results in the differ-
ence of isomer numbers, which is found by comparing the coefficient of each
term in the generating function (equation (16)) due to Fujita’s proligand method
and the corresponding one in the generating function (equation (28)) due to
Pólya’s corona. Thus the two generating functions are different in the coefficients
of the term X2Y 2Z2.

The factorization of each term into two factors is informative, as shown for
the term X2Y 2Z2 in table 5. This term can be factorized into four modes, each
of which corresponds to a graph enumerated in equation (28) of Pólya’s corona
(4X2Y 2Z2). The graph (5) shown in figure 4 is counted once to give the value 1
at the intersection between the XYZ ×XYZ-row an the last column in table 5.

On the other hand, Fujita’s proligand method gives the coefficient 5 of
X2Y 2Z2 (equation (16)), which are ascribed to the categorization of isomers col-
lected in the third column of table 5. Table 5 (the second column) also contains
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Table 5
Factorization of the term X2Y 2Z2 for ethane.

Isomer number due to Isomer number due to
Promolecule type Fujita’s proligand approach Pólya’s corona

Factors (figure 7) (equation (16)) (equation (28))

X2Y × YZ2 AB 1 1
X2Z × Y 2Z AB 1 1
XY 2 ×XZ2 AB 1 1
XYZ ×XYZ p2(p2), pp 2 1

Total for X2Y 2Z2 5 4

the promolecule type of each mode of factorization. Because a pair of enanti-
omers is counted once in this method, a pair of p2 and p2 is regarded as one
isomer. Obviously, the meso-isomer pp is counted once. Thus, the pair of enanti-
omers (6 and 6) and the meso-isomer (7) shown in figure 5 are counted to give
the value 2 at the XYZ × XYZ-row of table 5. Note that XYZ corresponds to
a chiral proligand p or p.

5. Conclusion

Fujita’s proligand method is applied to the enumeration of ethane deriv-
atives, where a promolecule is regarded as a skeleton having proligands and a
molecule is produced by replacing each proligand by methyl ligands. The enu-
meration results are compared with those derived by Pólya’s corona. Fujita’s
proligand method is capable of stereoisomers, while Pólya’s corona enumerates
graphs, but not stereoisomers.
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